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dimensionless lateral wave number; 
dimensionless amplification parameter; 
dimensionless pressure perturbation; 
specific heat at constant pressure; 
acceleration due to gravity; 

G, dimensionless number G = 4 

Gr,, Grashof number Gr, = ?---- ; 

k, thermal conductivity; 

Pr, Prandtl number Pr = f; 

Rayleigh number, Ra = Pr Gr,/cos cp; 
time; 
temperature; 
temperature at plate surface: 
temperature in free stream; 
dimensionless perturbation velocity 
component in x direction; 
dimensionless perturbation velocity 
component in y direction; 
dimensionless perturbation velocity 
component in z direction; 
streamwise coordinate parallel to plate surface; 
coordinate perpendicular to plate surface; 
lateral coordinate. 
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Abstract-The stability of natural convection flow along inclined plates has been investigated using the 
methods of linear perturbation theory. Attention has been focussed on three dimensional spatially growing 
disturbances, which take the form of parallel rows of streamwise oriented vortices. Results are presented 
of the critical Rayleigh numbers versus plate inclination angle. The theory is in qualitative agreement 
with experiment. The angle at which the three dimensional instability crosses over into the two 

dimensional wave instability is fairly well predicted by the theory. 
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Greek letters 

k 
thermal diffusivity oi = ;; 

PC 

lateral wavenumber; 
amplification parameter; 
temperature coefticient of vohime expansion 

inclination angle of plate from vertical; 
temperature component Q = T- T, ; 
temperature difference between pIate surface 

and free stream AT = T,- Tb, ; 
density; 
dimensionless y coordinate; 
characteristic thickness b = ,,‘2x/(Gr_J’!4. 

Subscript 

refers (except in the case of C,) to dimensional 

fluctuating components. 

1. INTRODUCTION 

RECENT observations [ 1,2] of natural convection flow 
along inclined plates have indicated that the flow 
exhibits an instability in the form of streamwise 
oriented vortices whenever the inclination angle of the 
flow with the vertical exceeds a certain critical value. 
For smaller angles of inclination, it appears that the 
two dimensional Tolimein Schlichting wave-type dis- 
turbances are the dominant mode of instability. 
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disturbances has been analytically inkcstigatcd I~! 

Plapp 161. Nachsttim 17 \ and Gcbhar1 [x] ;~rnc~ng 

others. The three dimensional instabilit! mode ha\ onl! 

reccntl) rccci\ cd attention (Haal;~nd [O]. La .~nd 

Lock [IO]). Haaland [9] used a form of base ilou 

protilc and disrurbance ditfcrcnt from that :)I the 

present paper. L.ec and Lock [IO) who consida both 

t\\‘o ;IS UCAI as three dimensional perturbations ax\um4 

that the base ilov, wa p;~rallcl This I! pc of assumpti~~n 

has been quzstioncd by Haaland [“I. The prc~~t 

paper is ;I linear analysis of the thrt‘c dimcn\ional 

instability in ;I yriGn, 0 natural CI)I~\ Cition b~>unti:\r\ 

lx\‘ct- 

2. b’OR\lI’l.\TlO2 

Consider ;in isothermal plate inclined at some anplc 

q to the vertical as depicted in Fig. I. The cool-dinntc 

axes and velocities :11-c assumed conventionally ah 

.x. J‘.: and II. I'. n respectively. with Y being mcasurcd 

in streamwise direction from the Icading edge of the 

plate. The standard methods of linear perturbation 

theory in which theinstantaneous values of the velocity. 

temperature and pressure components arc perturbed 

by disturbances of small amplitude and the mean Ilow 

components subtracted. with terms higher than first 

order in pcrlui-bation quantities bcilts ncglcctcd rcbliil\ 

in the foll~~wing system of ditfei-cntial cqu;itions. 

- Gpiiif! Iluclusting componcnl5 

i linir: and O:/’ I,. 

In \briting Lhc ;tbovc cqua~ions, the aaumpti~~n <)f 211 

incomprcAblc. Boussinesq fluid has been made. Since 

the‘ scope of the present investigation is confined Ii) 

three dimensional disturbances, and in pnrtiuular IOII~I- 

tudinal vortices, the followin g representation of rhc 

perturbations are postulated. 

ti = l,,,(~)l?” COh 7; 

i = I’,,(?.)“” C,IS %I 

I!l 
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A spacewise growth of the disturbance has been as- 
sumed on the basis of the experimental observations 
[i,2] reported in the literature. In these experiments, 
the vortices were seen to appear at some distance from 
the leading edge of the plate and amphfy with increasing 
distance downstream. At any given X, the vortices 
appeared stationary with a fixed lateral wavenumber cc. 
The mathematical assumption made here, is that a 
spacewise growth is more unstable than a timewise 
growth and is identical with the assumption made by 
Smith [11] for Taylor-Goertler vortices along concave 
curved walls. 

Substitution ofequations (2) into the set (1) results in: 

+g@T,cos cp + v[u; - (a2- /3”)zz,] 

cpWp-tVW; = ,;+ vcw;- (c&p”,w,J 

The temperatures and velocities are now generalized 
and made dimensionless in the manner usually em- 
ployed in boundary layer and stability theory. In 
accordance with Gebhart [S], the following scaling 
lengths and velocities are defined: 

gj?x3AT cos cp 
Crashof number Gr, = __JI_--.-- 

Temperatures are scaled with A.T. 
The following system of differential equations results 

-GdUv= GBC,-T 
dv 

d’w 
v-GVd;+(B2--A’-BGV]a = -G&Z’, 

and finally 

Bui- Aw-tv’ = 0 (3) 

2 

~-E’plGV~+[B2-,42-PrBGU]T- PrGz:s. 
dt1’ dvl drl 

Here Pr = v/6 is the Prandtl number, U, V and To refer 
to the dimensionless base flow quantities. 

It should be noted that the parallel flow assumption. 
viz. V = dV/dq = 0 has not been made. since there is 
increasing evidence 119,121 that such an assumption 
can cause significant variation in the results obtained. 
The boundary conditions for the perturbations are: 

where the auxiliary boundary condition, q = 0, dvidq = 0 
is obtained from the equation of continuity. 

The equations are homogeneous and linear with 
homogeneous boundary conditions and therefore con- 
stitute an eigenvalue problem. The information sought 
in solving the system (3) is the variation of G with the 
remaining three parameters A, B and 9. 

The linearized theory presented here, requires an 
anaIytical representation of the mean flow (also re- 
ferred to as the “base flow’) components. In this 
anaIysis, the similarity solutions of Ostrach [13] for 
the natural convection flow along a vertical heated 
plate were approximated by high order polynominals. 
Seventh degree polynominals were used to represent 
the base flow profiles for Pr = 0.72 while thirteenth 
degree polynominals were employed for Pr = 10.0. In 
order to obtain improved accuracy of representation, 
derivatives of the profiles were approximated by 
separate poiynominals. Calculations were made for 
Prandti numbers of 072 and 10-O at four different 
plate inclination angles. 

A re~nement in the analysis would be to use base 
flow profiles obtained for inclined plates. Kierkus [14] 



has obtained solutions to the mean velocity and tern-- 
perature profiles for naturai convecrion along inciined 

plates. However, his work apparently contains a b;laic 
error which restricts the range of validity of his rcsulth 
to inclination angles of less than about 30’ Howc\et-. 
his soiutions even then. indicalc that only nrinoi- 

changes in velocity profiles 0cci11‘ with incrcising 

mgle of inclination. while the mean temperature pro- 

file which after all is the basic driving tnechanism 01 
the instability, is almost independent of the inclination 

angle. Herein. WC have assu~ned tlut the similalil\ 
solutions for vertical heated plate\ would be applic;ibic 

when the definition of Grashof nw~lxr- is lll~~di~j~~{ 10 
incorporate the effect of ~n~lin~~~i(~l~ angle by the fact(tl- 
cos cp. This assumption is not wiG~orlt justifcalloil 1 i 5 1. 
Furthcrmorc. It is known [I /jrirJii. that the I-C~UI~S 01 
linear stability analyses. provide mainI! qualitati\ c‘ iw 

formation. It appears hard) justitiablc thcrelbrc. IO 

resort to time consuming numerical calculation.5 (31‘ the 
dcvelopinp profiles on in&cd heated platc‘~,. c~pcciail~ 

since in the abscncl: of similarity solutions. it \vi>ulci hc 
necessary to integrate the full houndar) layer eqtiatlcin\ 
in finite ditference form. 

3. ‘CILTHOD OY S0I.t ‘TKP. 

A1 this stage. several choices for solving the s!stom 
of equations (3) are available. Approximate analytic 
techniques such as the Galerkin method (dcscrihed in 

Kantorovich and Krylov [16]) could he CIII~IO~LX. 

However, due 10 Ihc complexity and uumhcr of dcpcn- 
dent \-ariahles in the equations. Galcrkin‘s pro~cdt~~c 

would involve an excessive amount of algebra rtaulting 
from the several analytical integrations rcyuircd. A 

further disadvantage to using methods such XT Galor- 

kin’s is the difficulty in obtaining accurate cipcn- 
functions. This has been discussed by Smith [I I]. It 
was therefore decided to solve the system of d~~~~r~Ii~i~ll 
equations hk numerical integration. in the present 
problem, all mwn flow quantities cxccpt the \~rloci~~ 
component perpendicular to the wall arc /cro in thy 
region outside the boundary layer. ‘The tliffercnGal 
equations in the free stream Ihereforc simplify to Ihc 
constant coefiicient type. which are readily solved in 
terms of elcmcntarq functions. The method of solution 
employed. was to integrate the equations numerically 
from the edge of the boundary layer to the hall. using 

the exponentialI) decaying far field solutions lo provide 
initial conditions at the boundary layer edge (taken ai 
tl = 6 for Pr = 0.72 and tj = 8 for PF = 1OG). Since the 

system of di~ere~~~i~~l equations contain ~~~~~n~r~tial~~ 
growing “pa&W’ solutions. it was necessary 10 
integrate them az a system of four initial value proh- 
lems, using the Gram-Schmidt vrthonormali~ati(?n 
process to maintain linear independence bctwcen the 
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FIG. 2. Neutral stability curves for different inclination angles. Prandtl number = 0.72. 

FIG. 3. Neutral stability cnrves for different inclination angles. Prandtl number = 104l 

0.1 IO IO 

FIG, 4. Comparison of neutral amplification curves for the two and 
three dimensional instabilities. Prandtl number = 0.72. 
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Rayleigh number (calculated from RU =: 4Pr([G!4]9 
vs inclination angle 9. His results were extrapolated 
to non-zero ~n~iinat~on angles by ~~~ultipiyii~g hi5 

calculated critical Rayl~i~h number by the cosine of 
the inclination angle. For angles up to about 20 thi:, 

is probably a good approximation since intuitively. 

one would expect a lower value of the critical Rayleigh 
number for two dimensional instability. The cxperi- 
ments reported in [I!], appear to confirm this. 

I08 

I 

t \ 

FIG. 5. Comparison between theory imd expenment 

The curve obtained is shown in Fig. 5 together with 
similar curves of the critical Rayleigh number for the 
vortex mode of instability. Here, the Rayleigh number 
is based on 9. not ycos q. Nachsteim’s results were 
evaluated for a Prandtl number of 0.733. The inter- 
section point of his curve with the Pi = 072 curve of 

the present calculation should mark the inclinaiioa 
angle at which transition between the wave and vortex 
modes of instability occurs. The rationale for this con- 
clusion is based on the assumption that to the left of 
this crossover point, two dimensional waves are ampli- 
fying faster than three dimensional vortices. To the 
right of this point, the vortices would grow at a faster 
rate than the waves. The actual situation is probably 
far more complex. For example, an initial arbitrary 
disturbance may start amplifying as a wave if the critical 
Rayleigh number for two dimensional waves is first 
exceeded. Later on however in it’s downstream history. 
the Rayleigh number for lon~tudinal vortices may be 
exceeded and if their ampli~ca~ion rate is suEiciently 

high so as to “overtake” the two dimensional com- 
ponent, then eventually vortices will appear in the 
experiments. In fact. the experiments of Lloyd and 
Sparrow [2] :h 4 ow mixed modes of vortices and ~avt‘b 
appearing at inclinati~~n angles of between I4 to I? 
Since the intersection point referred to e;triier occurs 
at around 17 it is reasonable to suggest that iht 

essential mechanism is not badI> described bq the 
present linear analysis. even though actuai quantitati\c 
results for the instability Rayleigh numbers differ h\ 
orders of magnitude. 

Figure 5 also contains the expel-nncntal rcsultx ot 
Lloyd and Sparrow [2] together with sonic’ dat<l i)f 

other researchers in the field. The data of Lock. Gor t 
and Pond [19] as well as that of ‘fritton [I51 anti 
Kierkus [14] plotted in ~ol~~li-is[)il <ontain a large. 

ani~~un~ of Lln~~rtainty as pointed oul by Lloyd ;rnd 
Sparro\n. For this ~CRSOII. although their data itre in 
closer agrcl-ment with the present calculations than 

the experiments of Lloyd and Sparrow. the agreement 
must be considcrcd fortuitous. By far the most reliahlc 
data at the present time is Lloyd and Sparrow’> .md 

even they ohtamed standard devlatlons o . f 50 pcl- 1‘c’rll 
in their measurements. l’hc diffcrencc betwren 1hei1 
experimental and the theoreticall\ prcdictcd \~alurs 1, 
about twt) orders of magnitude. 

Sornc of the possible reasons for the chscrepanc> cu C: 
ii) I-he inability of linear theory to predict eventual 

finite disturbance growth as opposed ;o initial 111.. 

stabilit]i. The ~xperin~elltal observations arc of well 
developed secondary flats. By the time the \orticch 
arc visible. the fluctuations maq h;ivc‘ amplified ;I 

thousand time>. Since WC hake considered perturh;i- 
tions thal grow in the streamwisc direction and the 
value of the Rayleigh number has ;I third powc~ 
dependence on Y. the actual point of first instabilit> 
corresponds to a mwh lower vaiuc of the Ra~lc~gh 
number-. 

(ii) The experimental value of thi: Rayieigh nunihel 
is \crj scnsjtive to errors made in lne~isur~n& 4. ‘The 
experiments of Lloyd and Sparrow stern to bc L‘CX~- 
sistent and reliable: therefort: most of the discrepaq 
is probably due to (i). 

(iii) The use here of boundary la\-er solutions fol- ‘1 
vertical heated plate with the simple co\ q corrcctiorr 
to the Grashof number, rather than the solutions fat- 
an inclined plate. To assess some idea of this etrect. 
we performed 21 small number of numerical expcri- 
ments in which the boundary layor solutions wcrc 
perturbed slightly towards those calculated by KieAus 
j14j. The indications were that this resulted in IOWCI- 
values of critical Rayleigh number. thus increasing the 
discrepancy between theory and experiment. Thii 
points to (i) as being the principal reason for thy 
disagreement, a fact already we11 knoun. 
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FIG. 6. Amplification curves for q = 30” and Pr = 072. 

The amplification curves for the case Pr = 0.72 and 
cp = 45” are drawn in Fig. 6. Unfortunately, sufficient 

data on experimentally observed wavenumbers is un- 
available at this time to permit a comparison between 

theory and experiment. 
Figure 7 is a sample of the eigenfunctions obtained, 

arbitrarily normalised to unity. They indicate that the 
fluctuations do not penetrate beyond the base flow 
region for that particular case, and are more or less 

confined to the boundary layer, chiefly because of the 
mean vertical velocity component directed towards 

the plate. 

5. CONCLUSIONS 

A linearized stability analysis of the natural convec- 
tion flow along inclined plates has been performed, 
considering three dimensional spatially growing dis- 

turbances. 

The results indicate that: 
(a) The critical Rayleigh number of the vortex in- 

FIG. 7. Normalized eigenfunctions at critical conditions 
Pr = 0.72, cp = 45”. 

stability is lowered as plate inclination is increased. 

(b) The critical wavenumbers of the vortices are 
unaffected by inclination angle and increase with in- 

creasing Prandtl number. 
(c)The vortex instability dominates the flow beyond 

an inclination angle of about 17”. 
(d) The disturbances appear to be confined to a 

region within the boundary layer, at the point of first 
instability. 

The results are mostly reinforced by experiment. 

Quantitative discrepancies may be attributed to the 
limitations of linear theory in predicting transition, and 
the uncertainties involved in experimentally determin- 
ing the first point of instability. 
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L‘INSTABILITE DE TYPE ‘TOUBILLONNAIRE DANS LA 
CONVECTION NATURELLE LE LONG DF PLAQUES INCLINEES 

R&sum6 On a btudii la stabilitC d’un &coulement de convection naturellc le long de plaques Inclint;es 
B l’aide des mithodes de perturbation IinCaire. L’attention a ct& port&e sur des perturbations tridimcn- 
sionnelles crolssantes dans I’espacc et qui prennent la formc de rangees paralliles de tourbillons orient& 
dans Ic sens de I’&oulement. On prisente Its rCsultats concernant les nombres critiques de R;tyleigh 
en fonction de I’angle d’inclinaison de la plaque. La thCorie est en accord qualitatif nvec I‘expenence. 
L’angle pour lequel I’instabilitP tridimensionnelle devient une instnbilitb bidimentionnelle ondulatoire 

cst asse7 blen estimC par 1;~ thLoi-ie. 

INSTABILE WIRBEL BE1 FREIER KONVEKTION L;iNGS GENEIGTER PLATTEN 

Zusammenfassung ~Die Stabilitit dcr Striimung bei fl-eier Kon\,ektion llngs geneigter Platten wurde 
mit Hilfe der linearen StrGmungstheorie untersucht. Besonderc Aufmerksamkeit wurde auf dreidimen- 
sionale. rHumlich wachsende Stiirungen gerichtet. die die Form van parallelen Reihen in Striimungsrichtung 
orientierter Wirbel annehmen. Als Ergebnis werden die kritischcn Rayleigh-Zahlen iiber den Platten- 
neigungswinkel angegehen. Die Theorie stimmt qualitativ mit dem Experiment iiberein. Dcr Winkel. bei 
dem die dreidimensionale Instahilit5t iibergeht in tine zweidimensionale wellenftirmige Instabilitit. wird 

\on der Thraric recht gut \oraussesagt. 

BMXPEBAR HEYCTOtiqMBOCTb TEYEHMR nPM ECTECTBEHHOti KOHBEKIIMM 
BAO_JIb HAKJ1OHHOti flnACTMHb1 

AHHOTaUaR -~~ C ~,OMOWdO MeTOilOB TCOPMM nMHei%HblX BO3MyLWHHCi HCC,leL,OBaJIaCb )‘CTOfiWBOCTb 

TeYeHMR “,,I4 eCTeCTBeHHOfi KOHBeKUMM BLlOnb HaKJlOHHOik ~JIaCTMHbl. hCCMaTpMB&WCb TpeXMepHb,e 

BO3paCTSOLUHe BO3MyLWHW3, KOTOPble flPMHMMaIoT BLUI ITapanJ=%lbHblX p5UlOB BclXpek, OPHCHTMPO- 

BaHHblX “0 TCLIfZHMH). Pe?yJlbTaTbl n,ELkCTk-iBneHbl B BMAe PBBMCMMOCTM KpMTWECKOrO YMCna kJW, 

OT y,-na HL,K”OHa ““aCTMHb,. TeopMn KaYeCTBeHHO COI-JTaCyeTCR C 3KCIIe,,HMeHTOM. TeOpeTMYeCKM 

XO~Olll” “pGYTCKEi3blBaeTCR yFO.2, npkl KOTOPOM TpeXMepHafl WYCTOihMBOCTb nepeXODMT B ilByMep- 

HYFO BO,,HOBYKl HQ’CTOtiYHBOCTb. 


