Int, J. Heat Mass Transfer.

Vol. 17. pp. 541- 548. Pergamon Press 1974, Printed in Great Britain

THE VORTEX MODE OF INSTABILITY IN
NATURAL CONVECTION FLOW ALONG
INCLINED PLATES

RENE A. KanawiTa* and RoperT N. MERONEY
Fluid Dynamics and Diffusion Laboratory, Engineering Research Center,
Colorado State University, Fort Collins, Colorado, US.A.

(Received 15 May 1973 and in revised form 15 September 1973)

Abstract—The stability of natural convection flow along inclined plates has been investigated using the

methods of linear perturbation theory. Attention has been focussed on three dimensional spatially growing

disturbances, which take the form of parallel rows of streamwise oriented vortices. Results are presented

of the critical Rayleigh numbers versus plate inclination angle. The theory is in qualitative agreement

with experiment. The angle at which the three dimensional instability crosses over into the two
dimensional wave instability is fairly well predicted by the theory.

NOMENCLATURE
A, dimensionless lateral wave number;
B, dimensionless amplification parameter;
C,, dimensionless pressure perturbation;
é, specific heat at constant pressure;
g, acceleration due to gravity;

Gr,\M*
G, dimensionless number G = 4 oy ;

AT x3 cos
Grashof number Gr, = 9P V-z-‘-.c.mf‘.’ :

k, thermal conductivity;

Pr, Prandt! number Pr = Ekg;

Ra, Rayleigh number, Ra = Pr.Gr,/cos ¢;

L, time;

7, temperature;

To, temperature at plate surface;

T, temperature in free stream;

u dimensionless perturbation velocity
component in x direction;

v, dimensionless perturbation velocity
component in y direction;

w, dimensionless perturbation velocity
component in z direction;

X, streamwise coordinate parallel to plate surface;

¥, coordinate perpendicular to plate surface;

z, lateral coordinate,

*Now at Ecole Polytechnique, Université de Montréal,
Canada.

Greek letters

N N

d, thermal diffusivity & = —;
oc

o, lateral wavenumber;

B, amplification parameter;

temperature coefficient of volume expansion

o 1fépy
- (%),

@, inclination angle of plate from vertical;

g, temperature component § = T —T,;

AT,  temperature difference between plate surface
and free stream AT = T,,— T, ;

o density;

1, dimensionless y coordinate;

3, characteristic thickness § = ,/2x/(Gr,)"*.

Subscript

, refers (except in the case of C,) to dimensional

fluctuating components.

1. INTRODUCTION

RECENT observations [ 1,2] of natural convection flow
along inclined plates have indicated that the flow
exhibits an instability in the form of streamwise
oriented vortices whenever the inclination angle of the
flow with the vertical exceeds a certain critical value.
For smaller angles of inclination, it appears that the
two dimensional Tollmein Schlichting wave-type dis-
turbances are the dominant mode of instability.
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The occurrence of streamwise oriented vortices in
other stratified flows is by no means uncommon. Gage
and Reid [3]. Kuo [4] and more recently Meroncy
et al. [5] have indicated that unstable stratification
in various shear flows can cause the appearance of three
dimensional disturbances. Furthermore, Gage and
Reid [3] have shown that for thermally stratified plane
Potseuille flow. Squire’s Theorem is inapplicable when
the Richardson number (defined by them as Ra:64Rd.
where Ra. Rd are the Rayleigh and Reynolds numbers.
respectively) goes below a certain small negative valuc.
This implics that when the Rayleigh number of the flow
is greater than some critical value, three dimensional
rolls will form regardless of the magnitude of the shear.

For the case of inclined plate natural convection. it
appears reasonable to suggest therefore. that whenever
the component of the body force at right angles to the
plate exceeds a certain critical value, streamwise
oriented vortices are generated. For smaller inclination
angles. the body force component along the plate serves
to accelerate the flow streamwise, untib the critical
Revnold’s number governing the stability of two dimen-
stonal waves 1s exceeded. The dominant instability
mechanism for the transition process is therefore de-
pendent on two competing factors, the first being the
critical Reynold’s number for wave disturbances. while
the second 15 the critical Rayleigh number for Tongi-
tudinad rolls.

The stability of natural convection flow to wave-type
disturbances has been analytically investigated by
Plapp [6]. Nachsteim | 7] and Gebhart [8] among
others. The three dimensional instability mode has only
recently received attention {Haaland [9]. Lee and
Lock {107, Haaland [9] used a form of base flown
profilc and disturbance different from that of the
present paper. Lee and Lock [10] who consider both
two as well as three dimensional perturbations assumed
that the base low was parallel. This type of assumption
has been questioned by Haaland [97] The present
paper is a linear analysis of the three dimensional
instability in a growing natural convection boundary
fayer.

2. FORMULATION

Consider an isothermal plate inclined at some angle
o to the vertical as depicted in Fig. 1. The coordinate
axes and velocities arc assumed conventionally as
x.v.z and w.eow respectively, with x being measured
in streamwise direction from the leading cdge of the
plate. The standard methods of lincar perturbation
theory in which the instantaneous values of the velocity.
temperature and pressure components are perturbed
by disturbances of small amplitude and the mean flow
components subtracted. with terms higher than first

Fia. 1. Natural convection from an inclined plate.

order in perturbation quantities being neglected resuits
in the following system of differential equations:
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~ signify fluctuating components.
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In writing the above equations, the assumption of an
incompressible, Boussinesq fluid has been made. Since
the scope of the present investigation is confined to
threc dimensional disturbances, and in particular longi-
tudinal vortices, the following representation of the
perturbations are postulated.

0= uyly)e cosuz

F = rply)ef cosur

= w ) sin gz !
p=pplyle cosx:

0= T, (e cos xz
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A spacewise growth of the disturbance has been as-
sumed on the basis of the experimental observations
[1,2] reported in the literature. In these experiments,
the vortices were seen {o appear at some distance from
the leading edge of the plate and amplify with increasing
distance downstream. At any given x, the vortices
appeared stationary with a fixed lateral wavenumber a.
The mathematical assumption made here, is that a
spacewise growth is more unstable than a timewise
growth and is identical with the assumption made by
Smith [ 117 for Taylor-Goertler vortices along concave
curved walls.

Substitution of equations (2} into the set (1) results in:

d' di
=ty = U+ Bty + U = ——
i (1} nﬁ DT de ,BPp

+gfT,cos (p+v[izp — (e — B, |
~ - dp . 1
i, i+ vu,,+upd~v = gpT,sin <p~:0vp,,
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The temperatures and velocities are now generalized
and made dimensionless in the manner usually em-
ployed in boundary layer and stability theory. In
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lengths and velocities are defined:
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Temperatures are scaled with AT.
The following system of differential equations results

du du dv
— — GV —+| B*~4*~ G| BU ——
dn? G dy [ ( d'?)}u
di
~G-—v=GBC,—~T
dy
dv dv [ / dvyl
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dc,
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dy ne
dw dw
- +[B*~A*~BGV]w = —GAC,
dy* dn
Bu+Aw+o =0 3)
and finally
d*rT

— PrGVgi+ [B? —A?~PrBGU]T = PrGe S0,
dn dn dn
Here Pr = v/4 is the Prandtl number, U, V and T; refer
to the dimensionless base flow quantities.

It should be noted that the parallel flow assumption,
viz. V = dV/dn = 0 bas not been made, since there is
increasing evidence [9, 12] that such an assumption

can cause sienificant variation i i
can cause significant variation in the results obtained.

The boundary conditions for the perturbations are:
dv
dn

n—oc,u,o,w, T —0,

p=0u=v=w=T=—=0

where the auxiliary boundary condition, 7 =0, dv/dy =0
is obtained from the equation of continuity.

The equations are homogeneous and linear with
homogeneous boundary conditions and therefore con-
stitute an eigenvalue nmblem The information sought
in solving the system (3) is the variation of G with the
remaining three parameters 4, B and ¢.

The linearized theory presenied here, requires an
analytical representation of the mean flow {also re-
ferred to as the “base flow”) components. In this
analysis, the similarity solutions of Ostrach [13] for
the natural convection flow along a vertical heated
plate were approximated by high order polynominals.
Seventh degree polynommals were used to represent
the base flow profiles for Pr = 0-72 while thirteenth
degree polynominals were employed for Pr = 10-0. In
order to obtain improved accuracy of representation,
derivatives of the profiles were approximated by
separate polynominals. Calculations were made for
Prandtl numbers of 0072 and 10-0 at four different
plate inclination angles.

A refinement in the analysis would be to use base
flow profiles obtained for inclined plates. Kierkus {14}
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has obtained solutions to the mean velocity and tem-
perature profiles for natural convection along inclined
plates. However, his work apparently contains a busic
error which restricts the range of validity of his results
to inclination angles of less than about 30°. However.
his solutions even then. indicate that only minor
changes in velocity profiles occur with increasing
angle of inclination, while the mean temperature pro-

file which after all is the basic driving mechanism of

the instability, is almost independent of the inclination
angle. Herein. we have assumed that the similarity
solutions for vertical heated plates would be applicablc
when the definition of Grashof number is modified o
incorporate the effect of inclination angle by the factor
cos . Thisassumption is not without justification | 15].

Furthermore, it is known « priori. that the results of

linear stability analyses, provide mainly qualitative in-
formation. It appears hardly justifiable therefore. to
resort to time consuming numerical calculations of the
developing profiles on inclined heated plates, especially
since in the absence of similarity solutions. it would he
necessary to integrate the full boundary layer equations
in finite difference form.

3 METHOD OF SOLUTION

At this stage, several choices for solving the svstem
of equations (3) are available. Approximate analvtic
techniques such as the Galerkin method (described in
Kantorovich and Krylov [16]) could be employed.
However, due to the complexity and number of depen-
dent variables in the equations, Galerkin's procedure
would involve an excessive amount of algebra resulting
from the several analytical integrations required. A
further disadvaniage to using methods such as Galer-
kin's is the difficulty in obtaining accurate ecigen-
functions, This has been discussed by Smith [11]. It
was therefore decided to solve the system of differential
equations by numerical integration. In the present
problem, all mean flow quantities except the velocity
component perpendicular to the wall are zero in the
region outside the boundary layer. The differential
equations in the free stream therefore simplify to the
counstant coefficient type, which are readily solved in
terms of elementary functions. The method of solution
employed. was to integrate the equations numertcally
from the edge of the boundary layer to the wall. using
the exponentially decaying far field solutions to provide
inttial conditions at the boundary layer edge (taken as
n = 6for Pr =072 and n = 8 for Pr = 10-0). Since the
system of differential equations contain exponentially
growing “parasitic” solotions. it wuas necessary o
integrate them as a system of four initial value prob-
lems, using the Gram-Schmidt orthonormalization
process to maintain linear independence between the

four homogeneous solution vectors. The general
method is well described in [17], while the details as
applied 1o the specific problem here is available in [187.
Results were obtained for inclination angles from the
vertical of 15, 30, 45 and 60" at Prandtl numbers of
072 and 100. In addition, amplification curves were
computed for a fixed angle of inclination of 30 for
different values of the amplification parameter BG.

4. RESULTS AND DISCUSSION

The results obtained arc presented in Figs. 2 7
Figures 2 and 3 are the neutral amplification curves
for the Prandtl numbers 0-72 and 10 respectively. Both
figures have been plotted. using for the abscissea the
quantity (. which Nachsteim (1963) interprets us o
characteristic Reynolds number of the flow. As ex-
pected, the How is increasingly susceptible to the vortes
instability at the higher inclination angles. Jt is inter
esting that the critical dimensionless wavenumbers
appear unaffected by inclination angle. in agreement
with the experiments of Sparrow and Husar [17]. At
the higher Prandtl number, the eritical wavenumber is
increased to about 117 which is more than a factor
of two over its value at the lower Prandt] number of
1472, The vatlue of G is consistently lower at the higher
Prandt] number as would be expected. since increasing
Prandtl numbers result in steeper mean temperature
gradients. Lee and Lock [10] obtained critical wave-
numbers of zero indicating vortices of infinite extent.
As mentioned in the introduction. we believe that the
discrepancy is due to their use of the parallel flow
assumption. At small wavenumbers. the coefficient Gt
of the first derivatives in equation {3) become in-
creasingly important with respect to the wavenumber.
For this reason our curves in Figs, 2 and 3 display
definite mimma. indicating that the vortices remain of
controlfed size. Furthermore. our numerical scheme
did not exhibit any problems of convergence o the
cigenvalue as theirs apparently did.

A comparison of the neutral ampiification curve
from the present theory for ¢ = 15 _ und the cor-
responding curves for the two dimensional wave in-
stability on o vertical heated plate calculated by
Nachsteim [7] have been drawn in Fig. 4. The two
curves from Nachsteim’s work are the result of two
different swability  caleulations. with and  without
velocity temperature coupling effects. When tempera-
ture fluctuations are taken into consideration. the
critical values of G and the waveaumber is sharply
reduced. However. both neutral amplification curves
of the wave nstability have critical G values above
that of the vortex instability

Using Nuchsteim's [7] results for the wave dis-
turbuances. a curve has been constructed of critical
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Rayleigh number (calculated from Ra = 4 Pr({G/4]")
vs inclination angle ¢. His results were extrapolated
to non-zero inclination angles by multiplying his
calculated critical Rayleigh number by the cosine of
the inclination angle. For angles up to about 20" this
is probably a good approximation since intuitively.
one would expect a Jower value of the critical Rayleigh
number for two dimensional instability. The experi-
ments reported in [2], appear to confirm this.
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F1G. 5. Comparison between theory and experiment.

The curve obtained is shown in Fig. 5 together with
similar curves of the critical Rayleigh number for the
vortex mode of instability. Here, the Rayleigh number
is based on g, not gcos¢. Nachsteim’s results were
evaluated for a Prandtl number of 0-733. The inter-
section point of his curve with the Pr = 072 curve of
the present calculation should mark the inclination
angle at which transition between the wave and vortex
modes of instability occurs. The rationale for this con-
clusion is based on the assumption that to the left of
this crossover point, two dimensional waves are ampli-
fying faster than three dimensional vortices. To the
right of this point, the vortices would grow at a faster
rate than the waves. The actual situation is probably
far more complex. For example, an initial arbitrary
disturbance may start amplifying as a wave if the critical
Rayleigh number for two dimensional waves is first
exceeded. Later on however in it’s downstream history.
the Rayleigh number for longitudinal vortices may be
exceeded and if their amplification rate is sufficiently

Rext A, KaHAWITA and ROBERT N. MERONEY

high so as to “overtake” the two dimensional com-
ponent, then cventually vortices will appear in the
experiments. In fact. the experiments of Lloyd and
Sparrow [2] show mixed modes of vortices and waves
appearing at inclination angles of between 14" to 17

Since the intersection point referred to earlier occurs
at around 17, it is reasonable to suggest that the
essential mechanism 1s not badly described by the
present lincar analysis. even though actual quantitative
results for the instability Rayleigh numbers differ by
orders of magnitude.

Figure 5 also contains the experimental results of
Lloyd and Sparrow [2] together with some data of
other researchers in the field. The data of Lock. Gort
and Pond [19] as well as that of Tritton [15] and
Kierkus [14] plotted in comparison contain a large
amount of uncertainty as pointed out by Lloyd and
Sparrow. For this reason. although their data are in
closer agrecement with the present caleulations than
the experiments of Lloyd and Sparrow. the agreement
must be considered fortuitous. By far the most reliable
data at the present time is Lloyd and Sparrow’s und
even they obtained standard deviations of 50 per cent
in their measurements. The difference between their
experimental and the theoretically predicted values is
about two orders of magnitude.

Some of the possible reasons for the discrepancy are:

{1) The inability of linear theory to predict eventual
finite disturbance growth as opposed o initial in-
stability. The experimental observations are of well
developed secondary flows. By the time the vortices
are visible, the fluctuations may have amplified «
thousand times. Since we have considered perturba-
tions that grow in the streamwise direction and the
value of the Rayleigh number has a third power
dependence on x. the actual point of first instability
corresponds to a much lower value of the Rayleigh
number.

(i} The experimental value of the Rayleigh number
is very sensitive o errors made in measuring x. The
experiments of Lloyd and Sparrow seem to be con-
sistent and reliable; therefore most of the discrepancy
is probably due to (i)

{ii1) The use here of boundary layer solutions for a
vertical heated plate with the simple cos ¢ correction
to the Grashof number, rather than the solutions for
an inclined plate. To assess some idea of this effect.
we performed a small number of numerical experi-
ments in which the boundary layer solutions were
perturbed slightly towards those calculated by Kierkus
[14]. The indications were that this resulted in lower
values of critical Rayleigh number. thus increasing the
discrepancy between theory and cxperiment. This
points to (i) as being the principal reason for the
disagreement, a fact already well known.
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The amplification curves for the case Pr = 0-72 and
¢ = 45° are drawn in Fig. 6. Unfortunately, sufficient

data on experimentally observed wavenumbers is un-
available at this time to permit a comparison between
theory and experiment.

Figure 7 is a sample of the eigenfunctions obtained,
arbitrarily normalised to unity. They indicate that the
fluctuations do not penetrate beyond the base flow
region for that particular case, and are more or less
confined to the boundary layer, chiefly because of the
mean vertical velocity component directed towards
the plate.

5. CONCLUSIONS
A linearized stability analysis of the natural convec-
tion flow along inclined plates has been performed,
considering three dimensional spatially growing dis-
turbances.
The results indicate that:
(a) The critical Rayleigh number of the vortex in-

-10

FiG. 7. Normalized eigenfunctions at critical conditions
Pr =072, ¢ = 45°.

stability is lowered as plate inclination is increased.

(b) The critical wavenumbers of the vortices are
unaffected by inclination angle and increase with in-
creasing Prandtl number.

(c) The vortex instability dominates the flow beyond
an inclination angle of about 17°.

(d) The disturbances appear to be confined to a
region within the boundary layer, at the point of first
instability.

The results are mostly reinforced by experiment.
Quantitative discrepancies may be attributed to the
limitations of linear theory in predicting transition, and
the uncertainties involved in experimentally determin-
ing the first point of instability.
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L'INSTABILITE DE TYPE TOUBILLONNAIRE DANS LA
CONVECTION NATURELLE LE LONG DE PLAQUES INCLINEES

Résumé --On a étudié la stabilité d’un écoulement de convection naturelle le long de plaques inclinées

4 'aide des méthodes de perturbation linéaire. L attention a été portée sur des perturbations tridimen-

sionnelles croissantes dans I'espace et qui prennent la forme de rangées paralléles de tourbillons orientés

dans le sens de I'écoulement. On présente les résultats concernant les nombres critiques de Rayleigh

en fonction de I'angle d'inclinaison de la plaque. La théorie est en accord qualitatif avec Fexpérience.

L’angle pour lequel I'instabilité tridimensionnelle devient une instabilit¢ bidimentionnelle ondulatoire
est assez bien estime par la théoric.

INSTABILE WIRBEL BEI FREIER KONVEKTION LANGS GENEIGTER PLATTEN

Zusammenfassung - Die Stabilitit der Stromung bei freier Konvektion ldngs geneigter Platten wurde

mit Hilfe der linearen Stromungstheorie untersucht. Besondere Aufmerksamkeit wurde auf dreidimen-

sionale. riumlich wachsende Stérungen gerichtet, die die Form von parallelen Reihen in Stromungsrichtung

orientierter Wirbel annehmen. Als Ergebnis werden die kritischen Rayleigh-Zahlen tiber den Platten-

neigungswinkel angegeben. Die Theorie stimmt qualitativ mit dem Experiment {iberein. Der Winkel, bei

dem dic dreidimensionale Instabilitit iibergeht in eine zweidimensionale wellenformige Instabilitdt, wird
von der Theoric recht gut vorausgesagt.

BUXPEBAS HEVCTOMUMBOCTL TEUYEHUS MPU ECTECTBEHHOW KOHBEKLIMK
BAOJIb HAKJIOHHOW MJACTHWHBbI

Anrotainsg — C NOMOLULKO METOAOB TEOPUM JIMHEHHBIX BO'}MyUJ,eHHﬁ HCCeaoBanacsL yCTOﬁ‘lMBOCTb

TCYCHWUA TIpH €CTeCTBEHHON KOHBEXLIMM BAOJIb HAKJIOHHOW MIAacTHHbI. PaccMaTpuUBaincs TPCXMEPHLIC

BO3pacTalOLIMEe BO3ZMYUICHHUA, KOTOPbLIC MPHHHUMAIOT BHI napaiacibHbiX paaos Buxpeﬁ, OPHECHTUPO-

BAaHHbIX IO TCYCHHIO. Pe?yﬂbTaTbl npeacraBiiedbl B BUAEC 3aBUCAMOCTH KPUTHHECKOTO MHC/IA Penes

OT yria HakKJoHa NIACTHHbI. Teopus KavyeCTBEHHO COTJIACYETCst ¢ 3KCIIEPHUMEHTOM. Teoperuqecxu

XOPOHIO MPEICKa3biBACTCA YIO.1, IPU KOTOPOM TpEXMEpPHasi HEYyCTONYHUBOCTDH NePEXOCOAUT B IBYMED-~
HYHK BOJIHOBYIO HEYCTOUYHUBOCTD.



